 [image: http://www.fi.edu/learn/case-files/eckertmauchly/ENIAC_Image_1.jpg] [image:] Advanced Placement Computer Science
Unit 6: File Input/Output
Lesson: Writing and Reading Text Files
Last Updated: 12/2/2012

		
Streams are C++ and Java’s way of standardizing input and output

A Stream is a sequence of bytes

A byte is a grouping of 8 bits

Examples of Streams,

Whenever a java application runs, The System static class is created and so is System.in(keyboard) and System.out(screen)

When a text file is written to a local disk, an output stream is created

When a text file is read from a local disk, an input stream is created

The next commands shown below is how Josh Komoroske opened a stream to an internet web server.
URL server = null; //A URL represents a uniform resource location
 try {
 server = new URL(url); //connect to the target URL
 } catch (MalformedURLException m) {
 throw new Exception(m);
 }
 BufferedReader in = null; //a buffered reader can process a stream of information
 try {
 in = new BufferedReader(new InputStreamReader(server.openStream())); //open a new stream buffer
 } catch (IOException i) {
 throw new Exception(i);
 }

There are two different approaches to storing information in files;
1. Text (groups of 8 bits / 16bits) are interpreted as a character

2. Binary: 1’s and 0’s can be interpreted in any way appropriate

There are two different approaches to accessing the stored information in files;
1. Sequential Access: Read from the start to the end

2. Random access: Can skip around the file to read where necessary

Meet the players;
	Class
	Useful for
	Example

	File
	Represents an individual file or directory on a disk system.
Used to open and close streams to that file
	//Use the File class to see if this is a directory
File searchRoot = new File(fileDir);
if (searchRoot.isDirectory())

	FileWriter
	Writing ASCII text to a text file. Often used in conjunction with PrintWriter (see below)

	//Try to open the stream for writing...
 try {
 FileWriter fw;
 fw = new FileWriter("output.txt"); //if file is already there, this will blow it away
 PrintWriter pw = new PrintWriter(fw);
 pw.println(“Two Roads Diverged in a Wood and I”);
 pw.println(“I took the one less traveled by”);
 pw.println(“And that has made all the difference”);
 }catch(Exception e)
 {
 System.out.println("Can't open file");
 }
 fw.close();

	PrintWriter
	Allows for easy access to putting information to the file, using print and println.
Works just like System.out except data is written to a text file instead of the console.
	See above example

	FileReader
	Reading ASCII text from an opened text file
	BufferedReader input = new BufferedReader(new FileReader("data.txt"));

	BufferedReader
	Useful for reading text files one line at a time. (Buffering also helps over a network or internet connection)
	See above

	StringTokenizer
	Breaks up a String into tokens or smaller Strings
	StringTokenizer st = new StringTokenizer(line, "|");

	Scanner
	Scanner can be used to read the text files as well
	try {
 //Attempt to open the file
 File f = new File(fileName);
 //Assuming its open, let's grab the info
 Scanner input = new Scanner(f);
 while (input.hasNext()) {
 //Read the currency
 String descript = input.nextLine();
 String temp = input.nextLine();
 double convertRate = Double.parseDouble(temp);

 //Now create a new Currency object
 Currency tempCurrency = new Currency(descript, convertRate);

 //Add into the array
 if (numRates < 100) {
 rates[numRates] = tempCurrency;
 numRates++;
 }
 }
 input.close();
 }
 catch (Exception e) {
 sc.println(" --------------------------");
 sc.println("| FILE problem |");
 sc.println(" --------------------------");
 sc.println(e); //print the exception
 }

Here is what the rates.txt file looks like;
Euro
0.74895
Great Britain Pounds
0.51481
Japanese Yen
117.650
Chinese Yen
7.74529
Mexican Peso
11.2075
Canadian Dollar
1.17725
Pakistani Rupee
60.7170

NOTE: Be careful with the last line and blank lines at the end of the file!!!

NOTE: Files must be in the project directory (NOT the source or class directory)

Steps for Writing a File:
1. Open the file for writing (can either APPEND or OVERWRITE)
APPEND = add to the end of what is there

OVERWRITE = destroy the file

Let’s write out the first and last names from an array to a text file called roster.txt

public static void main(String[] args){
	
	String[]names = {“Karl Marx”, “Abe Lincoln”, “Theodore Roosevelt”, “Aung San Suu Kyi”, “Alfred Nobel”};
	
	try {
		PrintWriter pw = new PrintWriter(new FileWriter(“roster.txt”));
		for(inti =0; i<names.length; i++)
			pw.println(names[i]);
		pw.close();
} catch (IOException ex) {

 }
}
Steps for Reading a File:
Create a scanner or Buffered Reader
Open the file
Repeat the readln command(or nextLine)
Close the Stream

import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.Scanner;
import java.util.logging.Level;
import java.util.logging.Logger;

public class ReadNamesUsingScannerSolFromNotes {

 public static void main(String[] args) {

 ArrayList<String>names = new ArrayList<String>();
 try {

 Scanner inFile = new Scanner(new File("roster.txt")); //looks in proj folder

 while(inFile.hasNext()){
 names.add(inFile.nextLine());

 }
 inFile.close();
 } catch (FileNotFoundException ex) {
 Logger.getLogger(ReadNamesUsingScannerSolFromNotes.class.getName()).log(Level.SEVERE, null, ex);
 }
 for (int i = 0; i < names.size(); i++) {
 System.out.println(names.get(i));

 }

 }
}

Mr Hanley’s preferred way of storing information:
I prefer to store information with each record on a single line

As an example, consider this text file

McCarthy|Walter|255 Grapevine Rd|Wenham|MA|01984|12000.00
NaSmith|Courtney|7 Main St.|Clifton Park|NY|12065|18000.00
[bookmark: _GoBack]Anderson|Trinity|957 First St.|Hermosa Beach|CA|01954|19000.00

/*===
 = FILE: ReadFileUnsureSizStringTokSol.java
 = DATE: 2/2/2004
 = AUTHOR: han1337
 = PURPOSE: Demonstrate reading data of unknown size
 ===*/
import java.io.*;
import java.util.*;
import java.util.StringTokenizer;

/*File could look like this
 McCarthy|Walter|255 Grapevine Rd|Wenham|MA|01984|12000.00
 NaSmith|Courtney|7 Main St.|Clifton Park|NY|12065|18000.00
 Anderson|Trinity|957 First St.|Hermosa Beach|CA|01954|19000.00
 */
public class ReadFileUnsureSizeStringTokSol
{
 String fname, lname, streetAddr, town, state, zip;
 double salary;

 public ReadFileUnsureSizeStringTokSol()
 {
 read();
 }

public void read()
 {
 try
 {
 BufferedReader input = new BufferedReader(new FileReader("data.txt"));

 String line;
 //Attempt to read from the file
 line = input.readLine();
 while (line != null) //goes to the end of file
 {
 StringTokenizer st = new StringTokenizer(line, "|"); //| is the delimiter
 //Now break up the line
 lname = st.nextToken();
 fname = st.nextToken();
 streetAddr = st.nextToken();
 town = st.nextToken();
 state = st.nextToken();
 zip = st.nextToken();
 salary = Double.parseDouble(st.nextToken());

 System.out.println("Here's our info " + fname + " " + lname + " " +
 streetAddr + " " + town + " " + state + " " + zip +
 " "
 + salary);
 line = input.readLine();
 }
 input.close();
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 }
 public static void main(String[] args)
 {
 ReadFileUnsureSizeStringTokSol rfus = new ReadFileUnsureSizeStringTokSol();
 }
}
8 | Page

image1.jpeg

image2.png

