String*Arrays*ArrayList*Client Server*Artificial Intelligence*Inheritance*Files*Video Games*Short circuit evaluation*

3.0

Twos Comp

41 PM

11/7/2017 1
Ones Comp

TRUST BUT VERIFY

Assignment 5/101,/53/5,5 Version
BoxPrint and Console Input Verifiers

Last Updated

[9POIAI [|B}41918/\\ 4 310S UOI1I9SU],110S UOI1ID|9S, Sulwwes30.d awaaix3, syoeis,uoneljoN O Sig, Alows|A diweuAq ,

Let’s create something USEFUL, yes | know | said it, something you can actual USE

again!

This project will be spread out across 4 different classes

CWHUtilities or
BLPUrtilities
depending upon
your intials

This guy will have 2 static methods in it!
public static void outputSquareRoots()
and public static void outputBoxStr(String message)

Assign5Tester

This class is going to have a main method with a menu

The menu is going to have the following options

1 = Output Square Roots from 1-100

2 = BoxPrint Something Nifty

3 = Use Verifiers for 3 examples

0 = exit

This menu is going to call the methods and objects from the other
classes

DoubleVerifier

This class has a Instance Vars, a Constructor and a
readAndVerifyMethod

IntVerifier

This class has a Instance Vars, a Constructor and a
readAndVerifyMethod

Let’s build your Tester First
public class Assign5 see my website

Parts 1 and 2 will be static methods in a class called “CWHUtilities” if your initials are
CWH or “BLPUtilities” if your initials are BLP.

1. Write a loop that will print out the square roots of the numbers from 1 to 1000.
Use a tab in between the numbers and make a table

1 1

2 1.4142135623

1000 31.622776601

public static void squareRoots(){ ... }

. Write a method that takes in a String and prints a box around it
The string can be between 1 and 20 characters
Scale the box accordingly

For example
public static void outputBoxedStr(String message) { ...}

outputBoxedStr(“Hi!”);

Since there are 3 characters in the message, you will place a row of 3 characters + 1
space before and after(2 total) + 2 leading @’s and 2 following @’s (4 total)=3 + 2
+4 =9 @’s to form the top of the box

Then print out 2 @’s, fill the middle with spaces and then 2 more @’s

Then print 2 @’s + a space followed by the message followed by a space and 2 @’s
to finish

Then print out 2 @’s, fill the middle with spaces and then 2 more @’s

Follow up with 9 @’s on a separate line to finish the bottom of the box

(Change in font below to a mono spaced font == each character is same width)
@@EEEEEE@E

@@ @@

@@ Hi! Q@

@@ @@

@@EEEEEE@

Another example
outputBoxedStr(“Name: Brianna”);
@@@EEEEEEEEEEEE@EE@E

@@ @@

@@ Name:Brianna @@

@@ @@
@@EEEEEEEEEEEEE@EE@E

If a String > 20 characters comes in, force only the first 20 characters to get
printed. You can take a substring of the existing String by using

message = message.substring(0,20);
emphasis for Manan Jain (2019)

//first you want, first you don’t want

Another example
outputBoxedStr(“The Philadelphia Flyers”);
@@EEEEEEEEEEEEEEEEEEEEE@@@E

@@ @@
@@ The Philadelphia Fly @@

@@ @@
@QEEEREEEEEEEELEELEELEErEeQM

From a separate class, you now can do....
public static void main(String[] args) {
outputBoxStr(“Assignment #1”);

}

. Make 2 input verifier classes to make sure numeric inputs are in range
Your first class should be called DoubleVerifier
Your second class should be called IntVerifier
Your classes should accept in a Scanner reference, a high value, a high value, a
boolean if the low value is inclusive, a boolean if the high value is inclusive and an
Clip to be played if the value is out of range.

In addition, create a method called readAndVerify() that prompts the user to enterina
value and checks to make sure its within value.

If the user enters in a number out of range or an alpha-numeric character, reject the
input and play the Clip that was passed in. Give them an error message and force them
to type it in until an acceptable value is entered.

Example,

public class DoubleVerifier {

//This is a constructor
public DoubleVerifier(Scanner sc, double lo, boolean loinc,
double hi, boolean hilnc, Clip eSnd) {

}
public double readAndVerify() {

//Reads in a value using the Global Scanner variable provided to the
//Constructor
//\f the value is out of range, plays the Clip error sound and

prompts for input again until in range

}

//Global Variables

private Scanner keyboard;
private double low, high;
private boolean highinc, lowinc;
private Clip errorSnd;

//Let’s SU p pose these are the valid ranges for tidbit

Computer Cost 0 < cost <= 12000
Interest Rate(suppose it is a real number) 0 < rate <= .20
Down Payment(suppose it is a real number 0= < rate <= .50

Here’s how to use this class in your TidBitComputerStore as follows;
Scanner input = new Scanner(System.in);
//Sound Clips
Clip bombSnd; //Clips to be played
//Load up sound file
bombSnd = null;
File bombSndF = new File("sounds/Explosion.wav");//folder in project
try {
bombSnd = AudioSystem.getClip();
bombSnd.open(AudioSystem.getAudiolnputStream(bombSndF));
} catch (Exception e) {
System.out.printin(e);
}
//For the cost 0 is not ok but 12000 is
IntVerifier costintVer = new IntVerifier(input, 0, false, 12000, true, bombSnd);

//For the rate we use a double verifier for fun, 0 not OK .2 is ok
DoubleVerifier annualRateDIbVer = new DoubleVerifier(input, 0, false, .2, true,
bombSnd);

//For the downpayment, let's use a Double Verifier for %, 0 ok and .5 OK
DoubleVerifier downPayDlbVer = new DoubleVerifier(input, 0, true, .5, true,
bombSnd);

Re +Iﬂia vv;til.
system.out.println(

"\n Please enter computer cost");
cost = input.nextDouble();

stem.out.printIn(“Please enter cost 0 < ¢ =12000”);
cost = cos ;

Replace this with:

””‘——;;;;;;T;ut.println(

"\n Please enter annual interest rate, ex 12 for
rate = input.nextDouble() / 1@0;

Wonthlyﬁcate = rate / 12;

System.out.printIn(“Please enter rate 0 < rate <=.2");
rate annualRateDIbVer.readAndVerify();
rate = rate /12;

System.out.println(
"\n Please enter down payment %, example 1@ for 1
double downRate = input.nextDouble() / 106;

\

System.out.printin(“Please enter down payment 0 <= down payment <=.5");
downPayment = annualRateDIbVer.readAndVerify();

Tweak the rest of your tidbit to work with decimals as rates instead of integers.

How do | make sure that Tidbit can

see assignment 5 classes?

Choose File...Project Properties
Choose Libraries...Add Jar/Folder and find the Assignment 5 build/classes folder

@ Project Properties - TidBitComputerStoreSolutionNB

Categories:
-~ @ Spurces Java Platform: DK 1.8 (Default} = Manage Platforms...
& Libraries
5 & Build Libraries Folder: Browse...
@ Compiling
- @ Packaging Compile Processor Run Compile Tests Run Tests
> @ Deployment
L. @ Documenting
Run han\Dropbox\JavaProjects\Reusable Components\Verifiers\build\classes Add Project...
Application
L. @ Web Start Add Library...
License Headers
Formatting
Hints

Compile-time Libraries:

Edit

Remove

Move Up

Move Down

<

Compile-time libraries are propagated to all library categories.

Build Projects on Classpath

Cancel Help

public static void main(String[] args) {
Scanner input = new Scanner(System.in);
Clip bombSnd;//, crashSnd; //Clips to be played

//Prepare an Audio File for the Verifiers, let's use the bomb sound
//Load up all sound files
File bombSndF = new File("sounds/Explosion.wav");

//Load up sound files
bombSnd = null;

try {
bombSnd = AudioSystem.getClip();

bombSnd.open(AudioSystem.getAudiolnputStream(bombSndF));
} catch (Exception e) {
System.out.printin(e);

}

DoubleVerifier dvl = new DoubleVerifier(input, 1, true, 9.5, true, bombSnd);
double x = dvl.readAndVerify(); //forces value to be between 1 and 9.5 inclusive

In order to properly handle someone typing in letters or other symbols that are not
allowed, use the following code in your read and verify method
double inVal=0;
try {
inVal = keyboard.nextDouble();
//more logic here to decide range
//logic
}catch (InputMismatchException e) {
System.out.printin("@E@EPEPRRPEPRPPACEPRPPEPRPEPAR@A");
System.out.printin(" Bad Character");
System.out.printin("@EE@EEPRPEPEPRPEEPPRPRPEEPRE@E");
errorSnd.setFramePosition(0);
errorSnd.start();
}
finally {
keyboard.nextLine();
}
Project Name Assign 5 — Good Stuff
Class 1 Name CWHUtilities
Class 2 Name DoubleVerifier
Class 3 Name IntVerifier
Class 4 Name Assign5Tester

Rubric

Print out square roots 10
outputBoxedString 25
DoubleVerifier constructor 15
readAndVerify 40
IntVerifier constructor 15
readAndVerify for IntVerifier 20

TOTAL

*Recursion*Linear Search*Binary Search*Grid World Case Study*File Processing *nlogn*Hangman*

