

1

Assignment 15:Recursion

Binary Ones Comp Twos Comp

AP Computer Science

Mr Hanley

Recursion

Ver: 3.1

Last Updated:11/3/2024 9:22 AM

The Hood

http://mrhanleyc.com/

2

1. Write the following 2 methods recursively

a. Find the greatest common factor
A recursive approach could use a “candidate” value.

This means that each call to the recursive method takes 3
parameters, num1, num2 and a candidate.
If the candidate divides evenly, return it…otherwise recurse down
DO NOT use doubles or negatives for this assign.

DO NOT USE EUCLID’S ALGORITHM,
DO NOT USE EUCLID’S ALGORITHM, DO NOT USE EUCLID’S
ALGORITHM, DO NOT USE EUCLID’S ALGORITHM, DO NOT
USE EUCLID’S ALGORITHM, DO NOT USE EUCLID’S
ALGORITHM, DO NOT USE EUCLID’S ALGORITHM, DO NOT
USE EUCLID’S ALGORITHM, DO NOT USE EUCLID’S
ALGORITHM, DO NOT USE EUCLID’S ALGORITHM, DO NOT
USE EUCLID’S ALGORITHM, DO NOT USE EUCLID’S

ALGORITHM

b. Raise an integer to a power
Allow the user to type in a base and exponent. Exponents may be
positive, negative or zero.
Exponents MAY NOT have decimal points with numbers after
Examples.
Please enter in a base: 3

Please enter in an exponent: 4
Your answer is 81

Please enter in a base: 5
Please enter in an exponent: -2

Your answer is .04
INCLUDE RAISING TO A NEGATIVE POWER, INCLUDE

3

RAISING TO A NEGATIVE POWER, INCLUDE RAISING TO A
NEGATIVE POWER, INCLUDE RAISING TO A NEGATIVE
POWER, INCLUDE RAISING TO A NEGATIVE POWER

2. Complete the AreaFill Skeleton
a. Complete the areaFill ()method and then fill with & so that we

can see where the initial mouse click was and the filled area
b. Finish the GraphMap method isInBounds

The recursive area fill problem comes from the Litvin’s book C++
for You++. Page 341-343 (isbn 0-9654853-9-0) 1998
Suppose a text file is stored that represents a computer image.
We will allow characters to represent the pixels.
An image may have a number of arbitrarily shaped blobs,
contours, isolated pixel, etc. Which each white pixel in an image
we can associate a certain white area (space) called the

connectivity component of that pixel. This is defined as the set of
all pixels that can be connected to the given pixel with a
continuous chain of white pixels.

Metaphorically, we can think of all black pixels and contours as
“walls” between white “containers”. If we pour in black paint at
a given point, then the container filled with black paint is the
connectivity component of that point – a concept familiar to all

users of paint programs. The areaFill method takes a specified
white pixel in an image and fills the connectivity component of
that pixel with black.

4

For example, here is an example of an image
...**.....
..*..***..
..*....***
.*........
.*......**
.***...*..
...****...
Assuming someone clicks at row 3(0 based, the
4th row) and col 4(0 based the 5th column), we
are going to mark this bad boy with a @ to
connote a FIRST CLICK
...**.....
..*..***..
..*....***
.*..@.....
.*......**
.***...*..
...****...
Now, let’s start “blob filling” as the great
Phil Sun calls it.
We can go north, south, east and west in any
order we choose.
Assuming we go North first, let’s mark that bad
boy with a fill character.
...**.....
..*..***..
..*.&..***
.*..@.....
.*......**
.***...*..
...****...

5

And again, since we filled a space we can go
north again
...**.....
..*.&***..
..*.&..***
.*..@.....
.*......**
.***...*..
...****...
Let’s try to go north again …oh, that is a
WALL. We must simply return and not go that
direction any more. Let’s go WEST next
(arbitrary, doesn’t matter which compass
direction we use…..!!!!)
...**.....
..*&&***..
..*.&..***
.*..@.....
.*......**
.***...*..
...****...
When its all said and done, it looks like dis
...**.....
..*&&***..
..*&&&&***
.*&&@&&&&&
.*&&&&&&**
.***&&&*..
...****...

The Litvins had a C++ class that represented the 2d image.

Their class was called IMAGE
We will be using some java classes on this project.

6

GraphMap
The GraphMap class represents an image. It has a constructor
written by Josh Komoroske(2009 shen grad) that reads in the
colors from a bitmap and decides whether or not the color

connotes a wall.
It is based on a 2d array of characters called map

You must write the constructor to read in a text file and set up

the character array to correspond to the walls and spaces.
(Remember . is a space while * is a wall)

AreaFillApp
Here is Josh’s app, it by default loads up one of the bitmaps and
then calls resizeToFit to make sure there are sufficient JButtons.
Each JButton represents a pixel. We’re gonna color these bad
boys different colors so we can see the image fillin’ while we are

chillin’! ;-)(Uh, oh, I had too much coffee again!!)

public class AreaFillApp {

 public static void main(String[] args) {
 AreaFillFrame a = new AreaFillFrame("image2.bmp",12, 12, 0,
0);
 a.setTitle("JDK Area Fill");

 a.resizeToFit(-1, -1, 6, 27);
 a.setVisible(true);
 }

}

7

AreaFillFrame
Method breakdown:
private void copyMapToScreen()
copies all of the symbols from the gm global GraphMap to the

JButton array on the frame. This is used to refresh after we click

Play with the colors if you like!!!!!
 private void copyMapToScreen() {

 //Colors are in RGB format 0..255 for each
 for (int y = 0; y < gm.getHeight(); y++) {
 for (int x = 0; x < gm.getWidth(); x++) {
 switch (gm.getPixel(x, y)) {

 case '*': //Wall or black
 buttons[x][y].setBackground(Color.BLACK);
 break;

 case '@'://First Click of each fill
 buttons[x][y].setBackground(new
Color(0x99ff00));
 break;

 case '&': //Subsequent pixels after first click
 buttons[x][y].setBackground(new

Color(0xcccc00));
 break;

 case '.'://Space or white
 buttons[x][y].setBackground(Color.RED);

 break; } } } }

8

private void areaFill(int x, int y)
TO DO: written by you, this will make sure x and y are on the
image and then check to see if the pixel is a space, if so

public AreaFillFrame(String file,int w, int h, int x, int y)
written by Komo, this sucker takes in a filename and does some
mojo to set up the correct width of the window

public void actionPerformed(ActionEvent e) {
 Point p = getButtonPos((JButton) e.getSource()); //this tells us
 int x = p.x, y = p.y;

 if (gm.getPixel(x, y) == '.') {
 areaFill(x, y); //starts the areaFill method, you will need to
recurse inside the method itself
 gm.setPixel(x, y, '@'); //when done, over-write the click

spot with a
 //@ symbol so we know where we clicked!!!
 }

 this.copyMapToScreen(); //update the buttons
}
private Point getButtonPos(JButton b)
this dudette looks at the array of figures out the x and y of the

jButton of wherever you clicked

setPixelSize(int w, int h)
cool stuff by Josh!
public void setPixelMargins(int x, int y)

cool stuff by Josh!
public Point getGridSize()

9

cool stuff by Josh!

public void resizeToFit(int x, int y, int bx, int by
cool stuff by Josh!

public void setFullscreen(boolean m)
cool stuff by Josh!

private void jbInit() throws Exception
This is what our old IDE JBuilder called its auto generated
window set up logic. Adds buttons to the window and does set
up stuff.
Thanks to the creators of JBuilder, a Borland product that we
used here for years. It was a darn good product!!!

public void clearFrame(){

//This gets rid of all JButtons on the frame
 getContentPane().removeAll();
}
public void keyTyped(KeyEvent ke) {
 if (ke.getKeyChar() == KeyEvent.VK_SPACE) {
 String filename;
 JFileChooser fc = new JFileChooser();

 int rc = fc.showDialog(null, "Select Data File");

 if (rc == JFileChooser.APPROVE_OPTION) {
 //The user chose a file, let's see if we can open it
 File file = fc.getSelectedFile();

 filename = file.getAbsolutePath();

10

TO DO: Uncomment the next line once you have a constructor
defined
 //gm = new GraphMap(filename, true);
 clearFrame();

 try {
 //resizeToFit(-1, -1, 6, 27);
 jbInit();
 } catch (Exception ex) {

Logger.getLogger(AreaFillFrame.class.getName()).log(Level.SEVE
RE, null, ex);
 }

 resizeToFit(-1, -1, 4, 10);

 copyMapToScreen();

 }
 }

 }
Checklist for things to do on AreaFill

☐Finish the GraphMap method isinBounds

☐Finish the AreaFillFrame method areaFill

☐Create a two arg constructor for GraphMap

You will be passing in a file name and a boolean

This is done for you in the keyTyped method
 //gm = new GraphMap(filename, true);
(You may ignore the Boolean as I just put it in so I could have a

different constructor that passed in a filename(overloaded))

11

The file format is
50 (width or columns -> second index into array)
50(height or rows ->first index into array)
FILES ARE NOT ALWAYS 50 X 50, COULD BE DIFFERENT SIZES,

FILES ARE NOT ALWAYS 50 X 50, COULD BE DIFFERENT SIZES,
FILES ARE NOT ALWAYS 50 X 50, COULD BE DIFFERENT SIZES,
FILES ARE NOT ALWAYS 50 X 50, COULD BE DIFFERENT SIZES,
FILES ARE NOT ALWAYS 50 X 50, COULD BE DIFFERENT SIZES,

FILES ARE NOT ALWAYS 50 X 50, COULD BE DIFFERENT SIZES,
…….****…***
…***… etc
If its all good, you should be able to hit the space bar and then
load up the pict1.txt file provided
HINT: Just copy the pict1.txt file to your desktop, it is WAY faster
than navigating through all the folders to find
your file

3. Complete the codingbat recursion problems
a. Recursion 1: factorial, bunnyEars, bunnyEars2, triangle,

count7,count8, powerN, countX, changeXY, noX, array6,

countPairs, nestParen

This button

will jump to

the desktop

12

Project Name Assign 15 – Recursion Practice

Class 1 Name RecursionClient

Class 2 Name RecursionMethods

Project Name AreaFill

Class 1 Name GraphMap: represents an image

Class 2 Name AreaFillApp: starts application

Class 3 Name AreaFillFrame:manages buttons, etc.

Greatest Common Factor

No EUCLIDS ALGORITHM

20

Raise Integer to a Power 20

GraphMap IsInBounds 20

areaFill() 30

GraphMap Constructor, reads in length
and width, populates *’s and .’s

30

Comments

10

Codingbat recursion1 52

TOTAL 152

RUBRIC

13

https://www.youtube.com/watch?v=dQw4w9WgXcQ

14

